LSI

Programme Specification

MSc (Continuing Professional Development)

Award Information

Type of Qualification Master's Degree
Final Award MSc (Continuing Professional Development)
Awarding Body London School of Innovation (subject to New DAPs)
Teaching Institute London School of Innovation
Exit Award(s) PgDip (120 credits), PgCert (60 credits)
External Accreditation N/A

Programme Details

Qualification Level Postgraduate
Language Of Programme English
Mode(s) of Study Full-time blended
Part-time blended
Credits CATS 180, ECTS 90
Notional Learning Time 1800 hours
Applicable FHEQ Descriptor FHEQ - Level 7
Applicable Subject Benchmark Statement
HECoS Code business and management (100078)

Entry Criteria

Admission to this programme will be governed by the School's Admissions Policy, which aligns with our commitment to inclusivity as outlined in the School's Access and Participation Statement. All applications will be assessed in accordance with the Admission and Registration Regulations of the School, ensuring a fair, transparent, and equitable process for all prospective students.

Requirement Details
Academic Qualifications An undergraduate degree or equivalent in any of the following:
Software engineering/computer science
English Language IELTS Level [Min. 7 ]

Aims and Objectives

Target Details
Skill Development
Real World Application
Career Prospects
Personal Growth

Learning Outcomes

Programme Structure

To qualify for the Master's Degree (MSc) you must achieve 180 CATS credits from the following.

Core Modules

Title Code Credits Level Teaching System Duration
Quality Assurance Testing Essentials (HB01) HB01 10 FHEQ - L4 Technical 15 4 Months Spec

Programme Modules Outcomes Map

The following mapping demonstrates how the programme outcomes are all addressed by the module outcomes.
In compliance with the School's regultations, every programme outcome is covered by at least one core module outcome.

Mode(s) of Study

Students can choose either of the following. Entry points can be at the beginning of any semester in the School's academic calendar (February, June or October) where an entry cohort is provisioned. For each semester of each year, the School's website will set out whether an entry cohort for this programme is scheduled.

Please view the programme page on our website for the latest information.

FullName Duration Location Asynchronous learning Synchronous learning
1 Full-time blended
Ideal for students who can fully commit to weekly classes (in-person or remotely) and willing to immerse in full-time education.
12 months
Students can begin in any of our standard semesters, on the first of February, June or October, and complete the programme in 3 consecutive semesters, studying 60 credits per semester.
On-campus or online. All modules delivered at LSI will allow remote attendance in order to promote flexibility, access, and participation. Our advanced, AI-enhanced online learning platform elevates student engagement. It features the Interactive Knowledge Graph (IKG) for efficient, engaging knowledge attainment, alongside AI-guided activities like quizzes, discussions, Q&A, and immediate feedback on practical tasks, supplementing synchronous classes. Rather than conventional lectures, our academic staff and subject-matter experts focus on interactive methods in live classes, facilitating problem-solving, role-play, case studies, discussions, and teamwork. Students attend these weekly sessions to engage in structured social learning. Our hybrid approach blends the convenience of digital resources with the motivation of human interaction.
2 Part-time blended
Ideal for students busy with work/life commitments, but who can commit to weekly classes (in-person or remotely).
24 months
Students can begin in any of our standard semesters, on the first of February, June or October, and complete the programme within 2 years. Per semester, they typically study 30 credits. Each taken module should begin and end within the same semester, except the final project, which can be stretched across two.
On-campus or online. All modules delivered at LSI will allow remote attendance in order to promote flexibility, access, and participation. Our advanced, AI-enhanced online learning platform elevates student engagement. It features the Interactive Knowledge Graph (IKG) for efficient, engaging knowledge attainment, alongside AI-guided activities like quizzes, discussions, Q&A, and immediate feedback on practical tasks, supplementing synchronous classes. Rather than conventional lectures, our academic staff and subject-matter experts focus on interactive methods in live classes, facilitating problem-solving, role-play, case studies, discussions, and teamwork. Students attend these weekly sessions to engage in structured social learning. Our hybrid approach blends the convenience of digital resources with the motivation of human interaction.

Credit Structure

The following are examples only. For more information, please read the school's registration regulations .

Full-time blended Example 1 (total of 180 credits)
Taught modulesFinal project
Year 1 Semester 160
Year 1 Semester 260
Year 1 Semester 360
Total12060
Full-time blended Example 2 (total of 180 credits)
Taught modulesFinal project
Year 1 Semester 160
Year 1 Semester 23030
Year 1 Semester 33030
Total12060
Part-time blended Example (total of 180 credits)
Taught modulesFinal project
Year 1 Semester 130
Year 1 Semester 230
Year 1 Semester 330
Year 2 Semester 130
Year 2 Semester 230
Year 2 Semester 330
Total12060

Teaching Systems

Name Workload Assessment Modules
Technical 15

Standard LSI teaching system for 15-credit modules for subjects requiring hands-on technical skills.

18h 🕑 Concept learning (knowledge graph)
9h 🕑 AI formative assessment
1.5h 🕑 Introductory lecture
13.5h 🕑 Workshop/Lab Sessions
18h 🕑 Individual or group assignments
30h 🕑 Summative assessment
51h 🕑 Independent reading, exploration and practice
9h 🕑 Case Study Review
Total: 150 hours
40% I K P Invigilated Exam
60% I T P K Technical Analysis and Solution Assessment
HB01

Teaching and Learning Methods

Each module will specify its teaching system, including weighted teaching and learning activities, which will be drawn from the following pool as appropriate.

Name Description
1 Concept learning (knowledge graph)

Our institution's approach to teaching is primarily based on flipped learning. Ahead of each weekly session (Workshop/Lab), students will be required to study the essential concepts that are used in the coming session so they are familiar with the theories and ideas related to that session. The study material will be in the form of written content, illustrations, pre-recorded lectures and tutorials, and other forms of content provided through the AGS.

This content is self-navigated by the students, accommodating different learning styles and schedules, allowing students to watch or listen to them at their own pace and review them as needed.

2 AI formative assessment

Once each concept of the theory is studied, students will be prompted to engage in formative assessment with instant AI feedback. They include multiple-choice questions, socratic questions and answers, written questions, role-play and other AI-assisted practice scenarios.

The purpose of this automated formative assessment is to provide students with immediate feedback on their understanding of module material and highlight any areas that need support or further study. They are also used to track student progress, boost motivation and promote accountability.

3 Introductory lecture

This is the first weekly session, dedicated to providing a comprehensive introduction to the module. The module leader will present an overview of the subject, elucidating its importance within various digital engineering professions and its interrelation with other modules. Students will need no preparation ahead of attending this session.

The module leader will provide a structured breakdown of the content to be covered in the subsequent 9 sessions. Students will also receive an outline of the essential reference materials, alongside suggestions for supplementary reading. The format and criteria for the summative assessment will be delineated, followed by a dedicated period for questions and answers.

A recording of the session will be available to facilitate async engagement for any other student who missed the class, also offering an opportunity to review the content again.

4 Workshop/Lab Sessions

Those studying in the blended learning mode will attend these 9 weekly classes (in person or remotely) during weeks 2 to 10. These sessions will complement the theory already studied during the preceding week (in our flipped-learning model), with discussions, analysis, practice or experience . They will be interactive and participatory, rather than one-way lectures. There will also be an opportunity for Q&A in every session. Depending on the nature of the content, challenges and learning activities will be pre-designed to apply flipped learning. They may include hands-on project work, group discussions or debates, roleplay, simulation, case studies, presentations, and other learning activities and opportunities. These workshops present an opportunity to apply critical thinking and problem-solving skills. They also encourage collaboration and foster a sense of community among students.

5 Individual or group assignments

Each Workshop/Lab session will be followed by an assignment. Assignments are used to reinforce learning and encourage independent thinking and problem-solving. They help the students identify the gaps in their understanding of the subject and provide them with an opportunity to apply what they have learned in a practical setting.

Assignments can be individual or group-based (teams of 2 to 4). They can take many forms, including essays, presentations, or projects. When they are group-based, teams will be randomly picked by AGS, in order to promote broader teamwork practice. Assignment files will be uploaded to AGS by the students ahead of the next weekly session. Feedback will be provided on each submitted assignment.

6 Independent reading, exploration and practice

This activity challenges students to engage with the reference material and independently explore and analyse academic literature related to the course topic. Students are expected to select relevant sources, practice critical reading skills, and where applicable technical skills, and synthesise information from multiple references. This is an opportunity to enhance research abilities, critical thinking, and self-directed learning skills while broadening and deepening subject knowledge.

7 Case Study Review

In this learning activity, students explore recent real-world case studies relevant to their course topic. The case studies will have been selected and curated by the module leader to represent up-to-date examples. They guide students through key details, contextual factors, and outcomes. This approach enhances students' understanding of current industry trends, challenges, and solutions, preparing them for real-world scenarios they may encounter in their future careers.

The learning experienced will be augmented by AI (virtual private tutor) allowing the students to critically engage with the content and discuss the case studies.

Assessment Formats

Each module will specify its weighted summative assessment formats which will be drawn, as appropriate, from the following pool.

Name Outcomes Modules
1 Invigilated Exam
This is a time-limited and closed-book exam with a mix of multiple-choice and analytical written questions that students undertake during the summative assessment period as scheduled under the School’s remote invigilation conditions to ensure quality and academic integrity. The exam enables the students to demonstrate their successful attainment of the module learning outcomes, primarily related to knowledge and understanding, and secondarily related to Professional/Transferable Skills. The analytical written questions will consist of problem questions representing issues and dilemmas students are likely to encounter in professional life and students have to synthesise and apply what they have learnt on the module in order to produce sound and reasoned judgements with respect to the problem. To enable the students to practice and prepare, various formative assessment activies, including quizzes and a AI-augmented assignments and mock exams are built into the module. Additionally, throughout the course, students will regularly receive feedback on their knowledge and assignments from AI as well as peers and staff to indicate how to improve future work and how to give constructive feedback to others.
I K P HB01
2 Technical Analysis and Solution Assessment
This assessment requires students to develop a solution to a complex problem within a simulated domain, followed by a detailed analysis and reflection on their design and its theoretical underpinnings. The aim is to assess students' abilities to design practical solutions, critically analyse their work, and articulate their understanding of the technical and theoretical aspects of the module.
I T P K HB01

Marking Criteria

The following grid sets out the School’s marking criteria for FHEQ - L7.

Outcome Expectation Distinction (70 - 100%) Merit (60 - 69%) Pass (50 - 59%) Fail (0 - 49%)
Knowledge and Understanding Systematic and critical understanding of relevant knowledge, concepts, new insights, and developments in the discipline, including within current literature, and also incorporating interrelationships with other relevant disciplines. Outstanding systematic and critical understanding of relevant knowledge, concepts, new insights, and developments in the discipline, including within current literature, and also incorporating interrelationships with other relevant disciplines. Very good systematic and critical understanding of relevant knowledge, concepts, new insights, and developments in the discipline, including within current literature, and also incorporating interrelationships with other relevant disciplines. Satisfactory systematic and critical understanding of relevant knowledge, concepts, new insights, and developments in the discipline, including within current literature, and also incorporating interrelationships with other relevant disciplines. Little to no systematic and critical understanding of relevant knowledge, concepts, new insights, and developments in the discipline, including within current literature, and also incorporating interrelationships with other relevant disciplines.
Intellectual Skills Ability to analyse, apply, and critically evaluate knowledge, techniques, and practices, in unpredictably complex contexts and to existing discourses and methodologies with intellectual skill and some originality. Exceptional analysis, application, and critical evaluation of knowledge, techniques, and practices in unpredictably complex contexts and to existing discourses and methodologies, with a high-level of intellectual skill and some originality. Sound analysis, application, and critical evaluation of knowledge, techniques, and practices in unpredictably complex contexts and to existing discourses and methodologies, with very good intellectual skill and some originality. Acceptable analysis, application, and critical evaluation of knowledge, techniques, and practices in unpredictably complex contexts and to existing discourses and methodologies, with satisfactory intellectual skill and limited originality. Little to no analysis, application, and critical evaluation of knowledge, techniques, and practices in unpredictably complex contexts and to existing discourses and methodologies, with a very narrow level of intellectual skill and no originality.
Technical/Practical Skills Comprehensive and critical understanding and organisation of specialist techniques and advanced methodologies in the discipline, including those related to critical thinking, specialist projects, research design, problem-solving, and techniques, and a practical understanding of how they should be selected and used to interpret incomplete knowledge and create effective artefacts. Outstanding critical understanding and organisation of specialist techniques and advanced methodologies in the discipline, including high-level critical thinking, specialist projects, research design, problem-solving, and techniques, and a thorough practical understanding of how they should be selected and used to interpret incomplete knowledge and create effective artefacts. Very good critical understanding and organisation of specialist techniques and advanced methodologies in the discipline, including sound critical thinking, specialist projects, research design, problem-solving, and techniques, and a very good practical understanding of how they should be selected and used to interpret incomplete knowledge and create effective artefacts. Acceptable critical understanding and organisation of specialist techniques and advanced methodologies in the discipline, including satisfactory critical thinking, specialist projects, research design, problem-solving, and techniques, and acceptable understanding of how they should be selected and used to interpret imcomplete knowledge and create effective artefacts. Limited or no critical understanding and organisation of specialist techniques and advanced methodologies in the discipline, including little or no critical thinking, , specialist projects, research design, problem-solving, and techniques, and a limited to no practical understanding of how they should be selected and used to interpret incomplete knowledge and create effective artefacts.
Professional/Transferable Skills Ability to show awareness, autonomy and self-direction in development and learning, tackling and solving complex problems, approaching and implementing tasks in diverse and unpredictable contexts, including professional, legal and ethical, critically evaluating own and others capabilities, and with an ability to communicate work to specialist and non-specialist audiences. Exceptional ability to show awareness, autonomy and self-direction in development and learning, taking a thorough proactive approach to tackling and solving complex problems, approaching and implementing tasks in diverse and unpredictable contexts at a very high level, including professional, legal and ethical, exceptional critical evaluation of own and others work, and with a thorough ability to communicate work to specialist and non-specialist audiences Very good ability to show awareness, autonomy and self-direction in development and learning, taking an effective and proactive approach in tackling and solving complex problems, approaching and implementing tasks in diverse and unpredictable contexts at a very good level, including professional, legal and ethical, very good critical evaluation of own and others work, and with a very good ability to communicate work to specialist and non-specialist audiences. Satisfactory ability to show awareness, autonomy and self-direction in development and learning, taking a good approach in tackling and solving complex problems, approaching and implementing tasks in diverse and unpredictable contexts at an acceptable level, including professional, legal and ethical, satisfactory critical evaluation of own and others work, and with a good ability to communicate work to specialist and non-specialist audiences. Little to no ability to show awareness, autonomy and self-direction in development and learning, taking a limited or no proactive approach in tackling and solving complex problems, approaching and implementing tasks in diverse and unpredictable contexts at a very limited level, including professional, legal and ethical, little to no critical evaluation of own and others work, and with little to no ability to communicate work to specialist and non-specialist audiences.

Programme Contacts

Role Description Name Email
Programme Director Oversees the overall direction and integrity of the programme.

Programme Approval

Stage Version Date of approval Authority Chair Revalidation
Strategic Approval 1.0 Board of Governors Somayeh Aghnia
Operational Approval 1.0 Executive Committee Paymon Khamooshi
Academic Approval 1.0 Academic Board Dr Paresh Kathrani
Core > Programme spec > Msc